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ABSTRACT 

In [5], H. E. Rauch discovered a formula for the first variation of an abelian 
differential on a Riemann surface and its periods with respect to the change of 
complex structure induced by a Beltrami differential. R. S. Hamilton, in [3], 
and discussed by C. Earle in [1], found an elegant proof of the formula using 
only first principles and not requiring uniformization theory. His proof uses a 
small amount of Hodge theory, the Riemann bilinear period relations, and a 
simple operator construction. In this article, we find an analogue of Rauch's 
formula for the Prym differentials using some of Hamilton's techniques, the 
Hodge theorem for vector bundles, and the "Prym version" of the Riemann 
bilinear relations. We discover a complicated set of formulas for the variation 
of the Prym differentials, with different specific solutions depending to the 
make-up of the Prym character. We conclude that the variation of the Prym 
periods with a given character depends on the differentials for the character 
and the differentials for its inverse. This explains the simplicity of the classical 
case, where the character is its inverse. 

1. Preliminary results on Prym differentials 

Let X be a compact Riemann surface of genus g >_- 2, let .~ be its universal 
covering space, p ~.Y be a distinguished point, and A~, . . . ,  Ag, B1 , . . . ,  Bg be a 
marking of X. We make the customary definition of Cj as the commutator 
AjBjAff IBff ~ . A Prym representation on X is a homomorphism p:  ltl(X, p) -*  
C*. It is normalized if it is a character, if the image ofp is contained in S ~. It is 

trivial if the image of every element is l, i f p - ~  1. 
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To each representation p corresponds a line bundle Lp over X. Lp is the line 

bundle whose factor of  automorphy for each T is the number p(T). If this 

bundle has a holomorphic section, then it is equivalent to the trivial bundle 

X × C. We call such a p analy~!ically tri vial. The analytically trivial represen- 

tations are determined by Abel's theorem; however, any normalized analy- 

tically trivial representation is trivial [2, p. 124]. 

A Prym differential for the representation p is a 1-form z on .~ satisfying: 

(1) z(Tz) =p(T)z(z), for all T~nI(X, p). 

If z is a closed 1-form, then its period on the curve T is the integral 

r(T) = ~prp z. This integral depends on the base point p in the manner described 

below. These periods satisfy the following equations: 

(2a) ~(I) = 0, 

(2b) r(ST) = r(S) + p(S)r(T), 

(2c) r(T-1) = _ p(T)-lz(T), 

(2d) z(STS-1) = [1 - p(T)]z(S) + p(S)z(T), 

(2e) z(STS-I T- ') = [1 - p(T)]z(S) - [1 - p(S)]z(T), 

(2f) z(T) = 0 if T E zq(X, p)", 

(2g) fqT'Z z(T)+[p(T) l ] y ,  q 

These results reveal the collection of  periods of  r to an element of  

ZI(nI(X, p), p), the 1-cocycles of the fundamental group with coefficients p. It 

is easy to see that ~ z can take any desired value; the functions of  the form 
T~--~ c[p(T)-1] form the 1-coboundaries W(nI(X,p),p). To avoid any 

confusion by our choice of base point, we can associate to z any indefinite 

integral on ){ we wish, as long as we do so consistently under addition of  

Prym differentials; this corresponds to associating to any z a particular choice 

of  representative for its class in Hl(rq(X, p),p). Notice that if p(T)= 1, 
r(T) is unaffected by any change of base point. We will make a final choice 

later. 

We now define the following sets: A1(X, p) is the set o f C  °~ Prym differentials 

forp on X, AI'°(X, p) is the set of C ~ Prym differentials of  type (1, 0) forp on X, 
A°.I(X, p) is the set of  C ~ Pucm differentials of  type (0, 1) forp on X, H~'°(X, p) 

is the set of  holomorphic Prym differentials for p on X, H°'I(X, p) is the set of 
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antiholomorphic Prym differentials for p on X, and K~(X, p) is the set of  

harmonic Prym differentials for p on X. As each of these sets can be de- 

fined locally, they are all well-defined. Note that if z~Al (X,p ) ,  then 
.? E AL(X, p-1), by conjugation of equation (1) and the equality p =p-1 .  We 

also define C°~(X, p) as the set of  C °~ functions f on .~ satisfying f ( T z )  = 

p ( T ) f ( z )  for all T. 
We can now discuss the equations for the Prym differentials corresponding 

to the Riemann bilinear relations for ordinary differentials. Let X be a 
fundamental polygon for X. Then, OZ ~ I and 07. = C i . .  • Cg. We then have 
the following: 

LEMMA 1. •g=1{[1 - p ( B j ) ] z ( A j ) -  [1 -p (Aj ) ]z (Bj )}  = O. 

PROOF. Since each ~ is homologous to zero, p(Q)  = 1. Then, 

0 = z(I) 

= 

= T ( c , )  + p ( C , ) r ( c : . . .  

= ~ ' (C1) --~ o . .  -~- T ( C g )  

= [1 - p ( B 1 ) ] z ( A O -  [1 -p(A~)]z(BO + . . .  + [1 -p(Bg)]Z(Ag) 

-- [1 -- p(Ag)]z(Bg). • 

This is the universal constraint on the periods of closed Prym differentials; 
the holomorphic differentials have further constraints. We now state without 
full proof the Prym bilinear relations for closed Prym differentials, the 
equivalent of  the Riemann bilinear relations for these Prym differentials. 

The problem is that the product of  two elements of AI(X, p) is not gener- 

ally a 2-form on X; we therefore consider the exterior product of  an element 

of  A~(X,p) with an element of Al(X,p-1). We may plausibly take 

exterior products of  two elements of AI(X,p) only if p 2 _  1, which corre- 

sponds to the classical case of Prym differentials. Fortunately, as we have 
mentioned before, the conjugate of an element of A~(X, p) is an element of 
AI(X, p - I ) .  
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PROPOSITION 1. I f  T ~ A~(X, p) and tr E A~(X, p -1)  are closed, then 

.IL r a f t =  ~]  
j = l  

[ p ( B j ) -  1 +p(Aj)-']T(Aj)a(Bj) 

g g 

(3) - Z p ( B j ) - t p ( A j ) T ( B j ) a ( A j )  + Z 
j = l  j = l  

[1 - p(Bj)-t lz(Aj)tr(Aj)  

g 

- Z [1 -p (Ai ) l z (B j )a (Bj )  + Z T(Cj)tr(Ck). 
j = l  I<=j<k<-_g 

For  the r ema inde r  o f  this paper ,  we restrict  ourselves to nont r iv ia l  P r y m  

characters  p with p(Aj) = 1 for a l l j .  In this case, T(Cj) = I1 -- p(Bj)]T(Aj), and  

the above  results reduce to 

g 

(4) Z 
j=l 

[l - p(Bj)l'c(Aj) = O, 

and  

g 

T ̂  a = Z p(Bj)T(Aj)a(Bj) - Z 
j=l j=l 

p(Bj)-'T(Bj)~(Aj) 

g 

(5) + Z [1 -- p(Bj) -I]T(Aj)o'(Aj) 

+ Z [ I  - -  p (B j ) ] [  1 - p (Bk)  - t ]T (A j )a (Ak ) .  
1 -<j <,k < g 

The  R i e m a n n  bi l inear  per iod inequal i ty  can now be adap ted  to the P r y m  

differentials as follows: 

PROPOSITION 2. Let  T be an element o fH"° (X ,  p). Then,  i SSx T A ~ is real 

and nonnegati ve, and 

o<=iffz^e 
= i  

g g 

Z p(Bj)- 'T(Aj)~(Bj- i  Y~ p(Bj)z(Bj)t(Aj) 
j = l  j = l  

+ i  
g 

Z 
j = l  

[1 - p(Bj) -~]l T(Aj)12 

+ i Z [I -p(B~)]U --p(B~)-'I~(Aj)~(A~) 
l < ' < k  < =J  ~ g  
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g g 

= 2  E 8[p(B;)f(Aj)T(Bj)I+i E [1--P(B;)-']Ir(3;)I 2 
j = l  j = l  

+ i Z [1 -p(B;)][1 
l<j<k<g 

with equality if  and only i f  z is identically O. 

PROOF. Locally, r = h(z)dz, and so 

r ^ f = Ih(z)12dz Adg = -- 2ilh(z)[Zdx ^dy .  

Thus, i SSx z ^ r >= 0. This is zero if  and only i f  r is identically zero. The 

remainder  comes from the Prym bilinear relations. • 

PROPOSITION 3. I f  r~H~'°(X,p),  and if  r(Aj)= O for all j ,  r ~ O .  Thus, 
for any collection of numbers {cj} satisfying Ef=~[1 -p(Bj)]cj = O, there is a 
holomorphic r satisfying r(Aj) = cj for all j .  

PROOF. If  r(A;) = 0 for all j ,  we may apply the above proposition. We learn 

that  Six z ^ ¢ = 0. As p is not analytically trivial, it is well known that the 

dimension of  the space of  holomorphic Prym differentials is g -  1. For  

example, we may use the R iemann-Roch  theorem on KLp- 1 to show that there 

can be no further conditions on the z(Aj) besides the one above. (Here K i s  the 

canonical line bundle.) • 

We now establish a standard normalizat ion for the periods of  a Prym 

differential. Let us define the vector ~p as ( 1 - p ( B O  . . . . .  1--p(Bg)). By 

equation 4, ~p is orthogonal to each vector (r(AO . . . . .  Z(Ag)). I f  this vector is 

not lightlike, if  ep • ep :~ 0, we can change our base point for r so as to make ep 

orthogonal to ( r ( B 0 , . . . ,  z(Bg)) also. This cannot affect z(Aj) for any j .  

Actually, we choose the appropriate 1-cocycle for each Prym differential. With 

this description, all the problems with base points go away. 

If  ~p is lightlike, then we must change our marking to obtain a new homology 

basis ([dr], [/~t]) with the vector (1 - P ( / t 0 , -  • •, 1 -p(Bg))  not lightlike. For  

example, we can choose j  < g - 1 such that  p(Bj) 4= 1. This is always possible; 

i f  no such j  exists, then either this vector is not lightlike or p is trivial. We now 

choose an element of  the modular  group that acts on the canonical homology 
basis as follows: 

[8;] 

[Aj+,] [Aj] + [Aj+ d, 
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[T] ~ [T] i f [T]  4: [g ] ,  [Aj+d. 

The map acting on the generators by 

A, ~-->.~, = B,+,A,B,+' , ,  

Bj ~-~ Bj = B j + , A f  ~Bj+ ~, AjBjBj+~,, 

Aj+, ~ Aj+,--- Bj+IAj-1Bj+'IAjAI+,Bj+tAjBj+II, 

sj+l =Bj+IA;%+IAjBf+',, 

T ~--> T -- T i f  T v~ Aj, Bj, Aj + t , or Bj + l, 

has the desired action on the homology basis. After we change the marking by 
this map, we have P(At)-- 1 for all l. We also have p(/~j) =p(Bj) /p(Bj+t)  and 
p(/~) =p(Bl)  for all l 4:j.  Th,en, the values of  a Prym differential r on this 

modified marking is: 

r(fij) = p(Bj + l)z(Aj), 

z(Bj) = (1 - p(Bj+ ,))z(Aj) + z(Bj) - p(Bj)p(Bj  + 1) -l't'(Uj + 1), 

~('4i+ ~) = p(Aj) + p(Aj+ O, 

• (/~j+l) = v (~+ l )  +p(Bj+t) (p(Bj+,)  - 1)'r(Aj), 

z(7~) = r (T )  i f T ~ A j ,  Bj, A j+~,orBi+, .  

In fact, let us choose a basis for the holomorphic  Prym differentials 
Zl . . . . .  zg_ ~. Any basis will be satisfactory, but we can choose it so that for 
j ~ k, ( z j ( A 0 , . . . ,  zj(Ag)) is or thonormal  to ( z ~ ( A 0 , . . . ,  z~(Ag)). The reason 
for this will be apparent  at the end. We define the Prym matr ix  as: 

(6) ( " c ' ( A l ) ' ' ' z ' ( A g ) ' r t ( B l ) ' ' ' ' c l ( B g )  i i ~ . 

\rg_l(A~) 7£g_~(Ag) -t-g_ I(B~) zg_,(Bg),t 

2. Beltrami differentials and Prym differentials 

We recall the definition of a Beltrami differential on a Riemann surface X, 
and how a Beltrami differential /z induces a deformation of  the Riemann 

surface into the Riemann surface X u. A C ~° Beltrami differential on X, /z ,  
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is an object that can be expressed in terms of a local coordinate on X as 

follows: 

(7) # = #(z)d~/dz  

where # must be invariant under change of coordinates. In other words, i f#  (z) 

is defined on )?, then 

(8) #(Tz )  = #(z )T ' ( z ) /T ' ( z ) .  

The absolute value of #(z) is a well-defined real-valued function on X. We 

assume that the supremum II u II is less than one. In this case, the Beltrami 

differential equation 

(9) w±(z) = #(z)wz(z)  

has a C °o solution on X for any local coordinate z, and all solutions w are 

holomorphically related. The solutions w define an atlas on the underlying 

topological surface of X; since they are holomorphically related, they define a 

Riemann surface X u topologically equivalent to X. It is well known that every 

Riemann surface topologically equivalent to X is conformally equivalent to X u 

for some Beltrami differential #. Furthermore, for Riemann surfaces near X in 

moduli space, we can assume # to be Coo. 
Since # is Coo, X and X u have equivalent Coo-structures. Thus any C °o 1-form 

on X u is a C oo 1-form on X, and any closed Coo 1-form on X u is closed on X. In 

particular, any abelian differential on X u is a closed 1-form on X. We can 

define sets AI(X), Al'°(X), A°'I(X), Hl'°(X), and H°'l(X), with the obvious 
meanings. Now, any Coo 1-form o9 on X has a unique expansion as a sum 

o9'+ o9", where Og'EA1'°(X), and o9"~A°'l(X). We will prove this result for 

Prym differentials later. Furthermore, the product of a Beltrami differential 

with an element of  AI'°iX) is an element of A°'I(X). 
Suppose that o9 is an abelian differential on X u. In terms of a local coordinate 

w on X u, o9 = f ( w ) d w  with fholomorphic.  Since f m u s t  be a solution of the 

Beltrami equation, 

dw = wzdz + w~de = w~(dz +lade), 

and so o9 = f (w(z))wz(dz  + #de). Here, z is a local coordinate on X. Thus 

on X, og '=f(w(z) )w~dz ,  and co" =f (w(z ) )wz# ( z )de ,  and so o9" =#o9'. In 

fact, any closed 1-form o9 on X such that o9" = #o9' is an abelian differential 

on X u. 
Now, we repeat this discussion for the Prym differentials on X and X u. 



330 E . R .  JABLOW Isr. J. Math. 

Let r be a C ° Prym differential for p on X ~. Locally, it can be written uni- 

quely as a sum o f C  ~ 1-forms r '  and r", where z' is of  type (1, 0) and z" is of  

type (0, 1). These two differentials can be thought of  as multi-valued 1-forms 

on X. 

LEMMA 2. Any. C °~ Prym ,differential z on X ~ is uniquely the sum o f  a 

C ~ Prym differential o f  type (1, O) on X and a C ° Prym differential o f  type 

(0, 1) on X. 

PROOF. The local decomposition of  z is unique. Therefore, 

which implies 

Then 

and therefore 

r(z)  = ~'(z) + -c"(z), 

T ( T z )  = ~'(Tz) + T"(Tz). 

p(T)r(z)  = z'(Tz) + z"(Tz), 

z(z) = p(T) -' z'(Tz) + p(T) -t z"(Tz). 

Since the dccornposition is unique, 

z ' ( z )=p(T) -~z ' (T )  and r" ( z )=p(T) -~z" (Tz ) .  

Thus z ' (Tz )=p(T)z ' ( z )  and z" (Tz)=p(T)z" (z ) ,  and both r '  and z" are 

Prym. • 

Now assume r is a ho lomo~hic  Prym differential on X ;. Locally z = 

h(w)dw. Since w satisfies the Beltrami equation, 

z = h(w(z))wzdz + h(w(z))wzl.t(z)d¢, 

and the two summands h(w(z))wzdz and h(w(z))wdz(z)d~, are Prym for p. 

thus, r" =/ t r ' ,  similar to the abelian case. 

3. Dualities between Pryrn differentials 

We now discuss an extension of  a well-known result in the abelian case to 

the Prym case. It is a simple consequence of  the Hodge theorem that any 

C ~ differential form of  type (1, 0) ~ can be written uniquely as a sum 

¢~ + Of, where ¢/is a holomorphic differential a n d f i s  a C ® function on X. The 
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Hodge theorem does apply to differential forms with values in a vector field 
over a manifold [6, p. 147]; in our case, Prym differentials are differential 
forms with values in Lp, a holomorphic flat line bundle over X, and this allows 
us to show that exactly the same decomposition occurs for a C ° Prym 

differential r. 
The Hodge theorem for vector bundles [6, p. 168] as applied to this situation 

of  a line bundle over a Riemann surface leads to the following: 

(10a) A1(X, p) = KI(X, p) • cgC®(X, p) ~) c~*A2(X, p), 

where t)* is the adjoint of  0. The adjoint 0* = - *Ltd ~Lp, where ~Lp is the Hodge 
star operator on Lp. It is defined as the map from A"T*(X)®Lp to 
A2-mT*(X)@L * given by ~Lp(~®e)= * ¢ ® e * ,  where *~ is the ordinary 
Hodge star, and e* is the dual in the hermitian metrix of the fiber. Since the 
fiber of Lp is C, we can guess that the hermitian metric is simply ~ ® ~; since the 
factor of  automorphy for the change from z to Tz is p(T), which takes ( ® ( to 

p ( T ) (  ®p(T) ( ,  which equals ( ® (, our guess is correct. Thus e* = e, and so 
iLt 0 = 0, and we have the decomposition 

(10b) A1(X, p) = K'(X, p) ~ cgC~(X, p) ~ OC°~(X, p). 

Since z is a differential of type (I, 0), it therefore splits into the sum of a 
harmonic Prym differential of type (1, 0), hence holomorphic, and Oh, for 
some h E C°(X,  p). Thus, z = ~ + Oh, the same as the abelian case. We use this 
to establish a duality between AI.°(X, p) and AI'°(X, p-1). 

PROPOSITION 4. There exists a unique map T: At,°(X, p -  1)__. A1,0(X, p) 

such that i f  z = Ta then d(z + a) = 0 and ~Aj(z + ~r) = O for all j .  

PROOF. If both z I and z2 satisfy these conditions, then 

d(zl - z2) = d(Zl + (r) - d(z2 + (r) = O. 

Therefore, (zl - z2) is holomorphic. Furthermore, 

~(~'1-~-~'2)= fAj(~'l"~ tT) - -~(~ '2"~tT)=0.  

Therefore, by Proposition 3, zl - '172 = 0. Thus, any solution is unique. 

To show the existence of a solution, we expand a as a sum fl + Oh, where fl is 
holomorphic, and h EAI(X, p -1). Then, a = 1~ + c~g, where 1~ E H°'I(X, p) and 

~q~ C°(X,  p). Since the periods of a satisfy 
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the periods of  O satisfy 

g 

j = l  
[1 - = o, 

g 

j ~ l  
[1 - p(Bg)] fl(Aj) = O. 

By Proposition 3, there exists a holomorphic Prym differential a forp such that 

SA, a = -- ~Aj/~ for all j .  Let z = a + 0F/. Then 

This is the sum of an antiholoraorphic Prym differential, a holomorphic Prym 

differential, and an exact Prym differential. Certainly it is closed. Obviously, 

its A-periods are obviously zero. Thus z = Ta. 
Note that T(Oh)= d[[. We ]Let L : A°'I(X, p)-~AL°(X, p) be given by L7 = 

TL Then d(7 + L~,)= 0 and SAj 7 + L7 = 0 for all j .  Please also note that 
T 2 = L 2 = id, meaning that the action of T on A1,°(X, p -  1) followed by its 
action on A1'°(X, p) is the identity. • 

4. Comparison theorems for Prym differentials 

In this section, we will prove that we can reconstruct the Prym differentials 
on X u from corresponding differentials on X and from the two operators T and 
L discussed above. In order to do this we will design an inner product structure 
on AI'°(X, p) and A°'1(X, p) for any Prym character p. 

LEMMA 3. The space AI'°(X, p), endowed with the product 

(fl, a ) = i  f 
is an inner product space. The space A°,I(X, p), endowed with the product 

is an inner product space. 

PROOF. It is obvious that these products are sesquilinear. Therefore, we 
need only show that 

(1) (fl, fl) ->__ 0 with equality only when f l - -0 .  
( 2 )  •) = 
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Part 1 is true since (p, f l ) =  i ~ x P  ^/~, and the integrand is a well-defined 
C ~° (1, 1)-form on X. If  fl =h(z)dz  locally (and here, h need not be 
holomorphic), then 

>0. 

This equals zero if and only if h is identically zero. Equivalently, this is true if 
and only iffl is identically zero. Part 2 is trivial, and the result for A°,~(X, p) is 
an easy consequence of this result. • 

Now, the only constraint on the A-periods of a holomorphic Prym dif- 
ferential is given by equation (4). This constraint depends only on the 
numbers p(Bj), and not on the surface X. Therefore, given a Prym differen- 
tial z(0) on X, there exists a Prym differential zOO on X u with identical 
A -periods: 

(11) A~ Z(#) = 5Aj Z(0) for allj .  

Now, write z(/~) as a sum z (# ) '+ -c (p )" ,  where z(#) '~A~'°(X,p) and 
z(/t)"~A°,~(X,p). The differential z ( / t ) - z ( 0 )  is closed and has zero 
A-periods. Thus, 

and 

d[z(/l) - z(O)] = O, 

Therefore, 

d{[z(/~)' - z(O)] + ~(/~)") = O, 

fA iT(u) - ,(o)l  -- o. 

fA ([Z(#)' -- z(O)] + Z(/t)"} = 0 for all j .  

By the definition of L,  z(p) '  - z(O) -- z(p)". However, we have shown that 
z(/z)" =/tz(/~)', and so: 
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3( /z ) '  - 3 (0 )  = L( /Z~( /Z) ' ) ,  

(12) 3(0) = 3(/Z)' - L(/Zr(/Z)'), 

3(0) = (I -- L/Z)3(/Z)'. 

I f  the opera tor  (I - L/Z) is invertible,  then  

3(#) '  = (I - L/Z)-13(0), 

and  

Z(/Z) = (I  -- L U ) -  13(0) + /Z( I  - L/Z)- lz(0). 

Isr. J. Math. 

THEOREM 1. The mappings T and L are isometries. Therefore, II L/Z 11 = 

II/z II < 1, and on the Hilbert space completion of Al,°(X, p), (1 - L/z) has the 

II/~ 112 = ( /~ , /~)  

= i Y~ [p(Bj)- ' f l(Aj)f l(Bj)-  p(Bj)fl(Bj)fl(Aj)] 
j = l  

g 

+ i  2 ( l-p(Bj)l f l (A:)f l (Aj)  
j = l  

+ i ~ (1 - p(Bj) - l ) (1  -p(Bk))fl(Aj)fl(Ak) 
l <=j < k  ~ g  

and  

PROOF. Let  a ~AI '° (X,  p-1),  and  let 3 = Ta  EAI '°(X,  p). T h e n  a = fl + Oh, 

where  fl is a ho lomorph ic  P r y m  differential  for p -  1 and  h E C~(X, p -  1). The  

differential  v = Ta  has a representa t ion  as a sum a + 0/~, where  a E H I'°(X, p). 

We know tha t  JAj a = -j ,~,/~, or more  s imply,  a(A;)= - ~ ( A j ) .  We will show 

tha t  [[fill = [ [a[ [ ,  tha t  I[~'h[[ = [[Ofi[[, and  tha t  (fl, Oh)=(a,  Oh-)=O. 
This  will imply  tha t  1[ a [[ = [[ r [[. 

By the P r y m  bi l inear  relations,  

inverse Z °~ tL, w Consequently, 3(#) '=Z,~=o(L/Z) '~(0) ,  and ~ ( # ) ' =  n ~ 0 \  t ~ l  • 

/z z .~=o(L/Z)"r (0) .  
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II - II 2 = (-, -) 
g 

= i 2  
j = l  

[p(Bj)a.Aj&(Bj) - p(Bj) -'c~(Bj)~(Aj)] 

g 

+ i 2  
j=l  

(1 - -  p(Bi) -')o~(Aj)&(Aj) 

+ i E (1 - p (Bj ) ) (1  - p(Bk) - ')a(Aj)&(A k). 
l<j<k<g 

W e  c a n  n o w  free ly  use  the  r e l a t i o n s  p(Bj)- l= D(Bj) a n d  a(Aj)= -fl(Aj) 
to  get  

g g 

II/~ II: - II ~ II 2 = - 2 2 ~[p(Bj)-~fl(Aj)fl(Bj)] + 2 2 ~[p(Bj)a(Aj)&(Bj)] 
j = l  j = l  

g 

- 2 2  
= l  

.~( l - p ( B j ) )  II fl(Aj) II 2 

- 2 2 .~[(1 --p(Bj)-l)(1 -p(Bk))fl(Aj)fl(Ak)]. 
l<j<k<=g 

M e a n w h i l e ,  

fL fl ^ a = 2 ~ [ p ( B j )  'fl(Aj)c~(Bj)] -- 2 ~s[p(Bj)fl(Bj)a(Aj)] 
j = l  j = l  

g 

+ 2  
j = l  

~ [ ( 1  - p(Bj))fl(Aj)a(Aj)] 

+ 2 ~ [ (1  - p(Bj)- t)(1 - p(Bk))B(Aj)o~(Ak)] 
l'<j<k<=g 

= ( II P II 2 - II ,~ II 2)/2, 

as ~ 2  = - ~ z  a n d  a(Aj) = -fl(Aj). H o w e v e r ,  fl a n d  a are  f o r m s  o f  t y p e  (1,  0),  

a n d  so  SSxfl ̂ a  = o. T h u s  [[fl [[2 = [[ a 112. 

T o  s h o w  I1 Oh II = I1 0/~ II, w e  c o n s i d e r  tha t  



336 E . R .  JABLOW Isr. J. Math. 

= II Oh II z -  II Oh II 2. 

Since dh and dh are closed and p(Afl = 1 for all j ,  ~Aj dh = ~.4~ dh = O. 
Therefore i ~x  dh ^ dh = 0, and II Oh II = II Oh II by  the Prym bilinear 
relations. In fact, we may consider what the correct normalization of  

the periods of dh must be. Suppose the correct antiderivative of  dh has 

value c at p. Then ~A, dh =,3, and ~Bdh = c ( p ( E ) - 1 ) .  In order for ~p 

to be orthogonal to (SB, dh . . . . .  ~B, dh), c must equal 0. Thus all the periods of 
dh are 0. 

Finally, we show that fl is orthogonal to Oh: 

( fl , Oh ) = i f ~x f l  A Cgh 

= O, as all the periods of dh are O. 

By the same argument, (a, Oh)= O, and so 

(a, a ) = ( f l  +Oh,B +Oh) 

= (fl,  fl) + (fl, Oh) + (Oh, fl) + (Oh, Oh) 

= (~,  ~) + o + o + (oh, oh) 

= (o~, o4 + (~, oh) + (oh, oO + (oh, oh) 

= (r, ~) 

= (Ta, Ta). 

isomet~l. Since L~, = T? and Therefore, T is an 

isometry also. 

We conclude that 

(13) z(/z) = z (0 )+  
r / = l  

II ~' II = II ~ II, L is a n  

(L~)~z(O)+/z ~ (L/z)"z(O). 
n=O 
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5. Variations of Prym periods 

Let o)z , . . . ,  o)g be a basis for the abelian differentials of  X dual to the given 
marking; then the Rauch variational formula for the period o)jk is: 

O)jk(].l) = (-Ojk(O) "JI- f f X(-Oj(O) A (-Ok(].L), 

O)jk(IZ) = COjk(O) + f f xO)j(O) ̂  o)k(~)" 
(I4) 

n ~ 0  

o j (o) + f f x  o( II. ,2). 

The corresponding formula for the Prym periods is much more difficult 

to obtain for two reasons. First, the left half of  the abelian period matrix 

can be chosen to be Ig; there is no standard choice for the left half of the 

Prym period matrix. For example, if the numbers p(BL),...,p(Bg) con- 

tain at least two distinct values other than 1, there must be at least 

one row with complex entries. Thus, any formula must consider a general 

choice of the left half of  the Prym matrix. Second, one can consider an 

integral of  the wedge product of  two elements of  AL°(X, p) only if p = p - l ;  

we discuss this case in the next section. It includes the case of  the classical 

Prym periods. 

We are given a basis for the Prym differentials for p on X, say vj, for 
1 =<j =< g - 1, where the rows of each half of the Prym matrix are orthogonal 
to ~'p. We take the liberty of  writing rj instead of rj(0) above. Then, we find the 

right half of  the Prym matrix of r l(#) . . . . .  rg_~(/~) on 2" as follows: re- 

member that T acts on every space HL°(X, p), and T 2 = id. Then as Trj and 

vk are holomorphic, 

g 

= I ;  P ( B , ) - ~ r r j ( A ~ ) [ r ~ ( ~ ) ( B ~ ) -  rk(B,)]  
/ = 1  

g 

- -  2 - p(B~)-~t~(A~)[~k(~)(B~) - rk(Bt) l .  
/ = l  
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However, 

fL 

n=O 

= f f  TTj ̂ ~rk ÷ O( II F, lib. 

We can write these equations in matrix form: 

THEOREM 2. 

- (p(Bl) -ltj(Al))j,t" (Zk(/z)(Bt) -- Zk(Bt))t,k 

(15) = ( f f : ~  T~j A ~z~)j,~ + O( II ~ lib. 

Now, the product of  a g - 1 by g matrix by a g by g - 1 matr ix equals a 

g - 1 by g - 1 matrix. Can we solve for the matrix (rk(#)(Bt) -- Zk(Bl))t,k? Yes, 

as this matrix maps C g-~ into the hyperplane ~p . ( z~ , . . . ,  z , )=  0, and the 

kernel of  the matrix (p(Bl)--~¢j(Al))j.l is just the set of  multiples of  ~p. We 

cannot give a general formula for the matrix (rk(/~)(BI) -- zk(Bt))l,k, but  we can 

always solve for it. 

It is of  special interest thalL in order for us to know the variation of  zj(Bk), 

we must know all the differentials z l , . . . ,  zg_ i. This is caused by the impossi- 

bility of  defining a canonical left half  of  the Prym period matrix. More 

interesting is that for us to know the variation o f  the differentials zj and 

of  the periods rj(Bk), we must  know the differentials Tzj. We must  know 

the structure of  both HI'°(X,p) and Hl'°(X,p -1) to know these variations. 

When p2~ 1, these two spaces are identical, and we have some remarkable 

simplifications. 

6. The classical Prym ditferentials 

When p2= 1, p =p,  and so A~(X,p)=AI(X,p-~) .  Thus T is an auto- 

morphism of  A~'°(X,p) and of  H~'°(X,p). It is only real-linear; it satisfies 

T(cz) = ~T(T). However, it can be calculated easily, as p can only take on the 

values 1 and - 1, and so the components  of  the vector ~p are 0 and 2 only. In 
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this case, there exists a basis rl . . . . .  Zg_ 1 for the Prym differentials such that 
every entry in the left half of the period matrix is real. Then, Tzj = - rj for all j ,  

and the matrix equations can be heavily simplified. We consider the two 
simplest cases here. 

6.1. The  classical 2-1  P r y m  cover 

Let p be given by p(A~) = 1, p(B1) = - 1, and p(Bj)  = 1, for 2 = j  =-< g. 

This corresponds to the following: let 2( be the 2 -  1 unbranched cover of  

X induced by the normal closure of  B 2 in zq(X). Then, )( has an involu- 

tion induced by the action of  B1; this in turn induces a linear transformation 

on HI'°()?), and the projection of  the - 1-eigenspace of  this map to X gives 

the Prym differentials. Since ~p = (2, 0 . . . . .  0), the Prym matrix can be 
written as: 

(16a) 

0 1 0 . . .  0 0 rI(B2) " ' -  " t ' l ( B g )  

0 0 1 . . .  0 0 "t'2(B2) . . -  ~'2(Bg) 
: : ; ' • . , 

0 0 0 . . .  1 0 rg_l(B2) . . .  rg_l(Bg) 

The shortened matrix 

1 0 ' ' "  0 ~1(B2) " ' "  ~ ' l ( B g )  

0 1 . - .  0 "~2(B2)  . . .  r2(Bg) 
(16b) 

; ; : : ' .  : 

0 0 . . .  1 rg_,(B2) ' ' '  Zg_l(Bg) 

is the matrix of the Prym variety; the right half is symmetric and has positive 

definite imaginary part, because: 

O = f £ z j ^ r k  

g g 

= 2 P(BI)-1rj(AI)z~(BI)  - 2 p(Bt)r j (Bl)rk(At)  
/ = 1  / = 1  

g 

+ 2  
/ = 1  

[1 - p(Bt)  - l]rj(At)rk(Al)  

+ 2 [1 -p(B,)][1 - p ( B m ) - l ] r j ( A z ) r ~ ( A , , )  
1 <= I < m  < g  

= T k ( B j + I )  - -  " ~ j ( B k + l ) -  
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Similarly, i S~xZj ^ Zk = 2,,~zj(Bk+,), and so if we let z = E cjzi ,  

O<----ifLzA~ 
g--1 g-, 

= 2  Y~ E Cjek3Zj(Bk+,) ,  
j ~ l  k = l  

and so the imaginary part of the right half of the matrix of the Prym variety 

is positive definite. The lattice generated by the columns of this matrix 

is the Prym lattice, and C g-~ divided by the Prym lattice is the Prym 

variety. 
Now, we determine the variation of the Prym periods. With this basis for the 

Prym differentials, Tzj = - zj, and so (where Azj(Bk) is rj(/~)(Bk) -- z j (Bk))  

(17) 

I°i°ilI° °1 0 0 1 • Az,(B2) Az , (Bg)  
- -  . 

i i i  i 

0 0 0 • Azg_ , (Bz )  AZg_ l(Bg)3 

--ffx"C'lAl, gTl . . . .  ffxTlA/.~'~g_l 

5f ; " f L  -- g _ l ^ l t Z l  • _ Zg_lhl . lZg_j  

From this, we conclude that 

(18) r/(t l)(Bk+,)-=zj(Bk+,)+ + o(  Ilu 112). 

5.2. A 4-1 coyer of a Riemann surface 

When p is given by p(A2) := 1 for all j ,  p ( B , )  = p(B2)  = - 1, p ( B j )  = 1, for 

3 _<j ___< g, the Prym differentials for p on X correspond to the following 

unbranched 4-1 cover of  X. Let X be the unbranched cover corresponding to 

the normal closure of B~ and B 2 in rq(X). Then there are involutions on X 

corresponding to the elements BI and BE of rq(X); these induce two involutions 

on H~'°(X). The projection of the combined ( - 1, - 1)-eigenspace to X are the 

Prym differentials. 

We can choose a basis for the Prym differentials % . . . ,  zg_, so the Prym 

matrix is 
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I 1 / 2  --1/2 0 . . .  0 --it(B2) tl(B2) z I ( B 3 )  " ' "  zl(We) I 
- 3  

0 0 1 • ." 0 -- z2(B2) z2(B2) rE(B3) t2(B e) 

(19) : : : : i i i i 

0 0 0 . . .  1 - t e_ t(B2) t e- I(B2) t e_ , (B3)  "Cg_,(Be). j 

The Prym bilinear relations for this Prym character reduce to t k ( B j + t ) =  

rj(Ak+l) for a l l j  and k, and the right (g - 1) × (g - 1) portion of this matrix 
has positive definite imaginary part. We can define the Prym variety as C e- 
divided by the lattice generated by the columns. 

Now we substitute the entries of this matrix into the Prym varia- 
tional formula. For this basis too, Tzj = - t j ,  and so we obtain the matrix 
equation: 

(20) 

1/2 

0 0 1 

0 0 0 

- 1 / 2 0  . . .  0- 

• " " 0 

" . : 

• -. 1 

The equation for each component  is then 

-- ATI(B2) .... A,~.I(Bg )- 

... ATI(B e) 

: '. _. 

A e_ (B2) - . .  Ate_ t(Be)_ 

- fLt,^ te-, 

--::xT~g-lA/.~'Cg-I 

t ~ f  . 
(21) Tj(/.~)(Bk+i)='r.j(Bk+l)~ - JJ, t: ̂utk + o(11. I1 ). 

Again, this is exactly the same form as that of the ordinary abelian case, 

7. Some Prym differentials for surfaces of genus 2 

Let us consider certain nonclassical Prym differentials for a surface X, 
differentials for a character p satisfying not p2 - -  1, but 19 3 ~--- 1. In this case, p -  
equals p2, not p. This implies various connections among the Prym differen- 
tials and the Pry m functions forp a n d p -  1. For example, the quotient ofa  Prym 
differential for p -  1 and one for p is a Prym function for p. 

Suppose now that the surface X is hyperelliptic, with genus g. Then X has 
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an involution with 2g + 2 fixed points, called j ,  the hyperelliptic involu- 

tion. The map j induces the map j . :  HI(X) ~ HI (X); this is simply multiplica- 

tion by - 1. Thus it induces the map p ~ p -  1 on the group of Prym characters 

for X, and thus j maps the Prym differentials for p-1 into those for p and 
vice versa. 

For example, let X be the hyperelliptic surface of  genus 2 given by y2 = 

1-I6= l(x - 2i) = f ix) .  The involutionj  is the map (x, y) ~ (x, - y). We label 8 

special points on this surface as follows: we call the Weierstrass point (2i, 0) Qi, 

and we call the two points at infinity Pl and P2. Here, P1 is the limit of(x ,  y) as 
x ~ oo and x-3y _ _ ~  1, while :for /92, X-3y ~ _ 1. We note that jP~ = 1'2 and 

JQi = Q~ for all i. 

Now we consider some important divisors on X. 

(x)~ = PI + P2, 

(Y) = QI + Q2 + Q3 + Q4 + Q5 + Q6 - 3P, - 3P2, 

(dx) = Q1 + Q2 + Q3 + Q4 + Q5 + Q6 - 2P1 - 2P2, 

(dx/y) = PI + 1>2. 

When will an expression in x, y, and dx be a holomorphic Prym differential 

for some character p with p3_--- 1. 9 I f r  is such a Prym differential, then r 3 will be 

an ordinary cubic differential. We know that the space of  holomorphic cubic 
differentials on X have a bas:is of  

{ (dx/y) 3, x(dx/];) 3, x2(dx/y) 3, x3(dx/y) 3, y(dx/y)3}. 

Therefore, up to multiplication of r by a cube root of unity, 

(22a) r3=(ao + a~x + a2x2 + a3x3 + by)(dxl3 
\ y /  

and 

Here, a(x) is the cubic ao + a~x + a2x 2 + a3x 3, and b is a complex constant. 
We now normalize this r so that b = 1. 

As r is a Prym differential for p, j r  is a Prym differential for r -  1. Therefore, 

r -jr is an ordinary holomorphic quadratic differential: 
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(23a) 

(23b) 

(23c) 

r . jr  = -- ~ a ( x )  2 -- y2 

\ y /  

However, the holomorphic quadratic differentials for X have the basis 
{(dx/y) 2, x(dx/y)  2, x2(dx/y)2}. Therefore, 

(24) .,~a(x) 2 - f ( x )  = R(x),  

where R(x)  is at most quadratic. This implies that 

(25) a(x) 2 - f (x )  = R(x)  3. 

Any solution of this equation (a, R) where a is at most cubic and R at most 

quadratic therefore induces a Prym differential ~ + y(dx/y). Since the 

Jacobian J(X) has exactly 80 points of order 3, there are 80 different Prym 

differentials with b = 1. As R has an ambiguity of a cube root of 1, we have the 

following results. 

LEMMA 4. Let r be a Prym differential for p, where p 3 ~  1 but p S I .  

Let (r) = ST  be the divisor o f t .  Then neither S nor T may be a Weierstrass 

point. 

PROOF. Suppose S = Q~, while T 4= Q~. Then 

(r) = ST 

= QiT, 

r : PiP2 

Q~T 
Q2 

T 

Qi 

Therefore, (T3/Q~) is the divisor of a meromorphic function, and so 3 is a 
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non-gap value for Q~. Therefore, Qi is not a hyperelliptic Weierstrass point; it 

does not have the correct gap sequence. Finally, if  S = T = Q,, then 

1 

and r is an abelian differential, violating the hypothesis p ~  1. • 

THEOREM 3. Let  X be the R iemann  surface with defining equation 

y2 = f (x) ,  where f is a sextic with complex coefficients, with distinct roots, and  

with leading coefficient 1. Then each nontrivial Prym character p" n~(X) ~ C* 

with all values cube roots o f  unity is associated to a Prym differential with 

the form 

where a (x )  is a polynomial  o f  degree at most 3. Furthermore,  

a(x)  2 - f ( x ) =  R ( x )  3 

where R is a polynomial  o f  degree at most  2. I f  R is quadratic, let x~ and x2 

be its roots. Then (z) = (Xl, - a(xO) + (x2, - a(x2)), l f  R is linear, with root Xo, 

then (z) = (Xo, - a(xo)) + Pi, where Pi is P~ or P2 depending upon whether the 

lead term o f  a (x )  is - x 3 or + x 3. I f  R is constant, then (r)  = 2P~, with P~ 

defined as above. 

COROLLARY 1. The equation a(x)  2 -  f ( x ) =  R ( x )  3 has exactly 240 solu- 

tions for a and R.  

PROOF. Suppose R is a quadratic, with roots Xl and x2. Then R ( x ) =  

c(x  - xO(x - x2), and this has zero divisor (xl, y¿) + (xl, - Yl) + (x2, Y2) + 

(x2, - Y2), where _+ yi are the two square roots off(x~) for each i. Furthermore,  

R has double poles at both PI and P2- Therefore: 

(R ) = (x~, Yl) + (x~, - y~) + (x2, Y2) + (x2, - Yz) - 2P~ - 2P1, 

( R = (x~, y~) + (Xl, - y~) + (x2, Y2) + (x2, - Y2) 

= (z .jz). 

As z a n d j .  z have degree 2, and ( j .  z) = j ( Q ,  
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(z) = (xl, 4- Yl) + (X2, 4- Y2), 

for some correct choices of sign. However, r is zero when y(x) = - a(x), and 

this case follows. I f R  is linear with root x, then (x, - a(x)) is certainly in the 

zero divisor ofz .  Also, since R 3 has degree 3, a(x) has leading coefficient + I. 
Now, divide the equation a ( x )  2 -  f(x) -----R(x)  3 by x6: 

a(x)  2 fix) R(x) 3 
X 6 X 6 X 6 

- ~ /  ~ - \  x ~ / , 

a(x) 2 

x 6 
- -  - (1  + O ( x - ' ) )  = O ( x - 3 ) ,  

a(x) 1)(ax(_~x3) + l)+O(x_~)=O(x_3), 
-7;-- 

a(x) 1)(a(x) 1 ) =  O(x-~). 
x 3 \ - - U  - +  

Thus, if the leading coefficient is + 1, then a has leading term x 3, and P2 is the 

infinite root, and so on. Finally, if R is constant, r must have 2 infinite roots. 

Since they cannot be both P~ and P2, in which case z would be abelian, the roots 
must be p2 or p2. • 

Now, how do we associate the Prym differentials for Pl and P2 with the Prym 

differential for pt p2? We assume that pt ~ P2 and p~ :~ p{ 1. Let 

dx 
r I = N ~ / a I ( X )  21- y - -  , 

Y 

dx 
r2 = , y a 2 ( x )  + y - -  , 

Y 

R 1 = x f a l ( x )  2 - f(x), 

R2 = x~a2(x) 2 - f(x), 

('~'1) = S l  Y l ,  

(r2) = & T ~ .  
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By the R i e m a n n - R o c h  theorem, 

r(3K - S~ - 7"1 - $2 - T2], = deg(3K - S~ - T~ - $2 - T2) - -  g + 1 

+ r(S~ + T~ + $2 + T2 - 2K) 

= 2 - 2 + 1 + 0  

= l ,  

since StTiS2T2 is not  the divisor o f  any quadrat ic  differential. Therefore  the 

space o f  all cubic differentials having rLr2 as a factor is one-dimensional .  Let oJ 3 

be a generator  o f  the space. 

Since o93/T~rz is holomorphic,  it is a P rym differential with character  (pip2) -1. 
In fact, the cubic differential ~o3 is de te rmined  by: 

Let 

093 
~'3 

Suppose 

Then  

~3 = 4'a3(~)  + y.  

1"3 = ~ - a3(x) + y 

is the differential for Pl &. We: then write: 

c(a(x) + y)( 1 , 

\ y /  

"~'1"C2~" 3 = 0)3~ 

,?/'a,(x) + y ~ ~ ,  ,ya3(x) + y = c(a(x) + y) , 

,ya,(z) + y , y S : , ( x ~  d'a3(x) + y = c(d(x) + y), 

(a~(x) + y)(a2(x) + y)(a3(x) + y) = c3(d(x) + y)3, 

where d(x) is a cubic in x .  Now, (d(x)+ y) is zero at S,, T~, $2, 7"2. Since 

(a~(x) + y) is zero at SL and ~q, so is d(x) - a~(x). However ,  Rl(x) is zero at $1 

and Tl. Therefore,  R~(x) I d(x) - al(x). Similarly, R2(x) ] d(x) - a2(x). Now, 

d(x) is unique; therefore it may be obta ined by the Chinese remainder  
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theorem, and Rl(X) and R2(x) are relatively prime. (Actually, this follows from 

the Riemann-Hurwi tz  theorem, because otherwise (zJr2) 3 would be a mero- 

morphic function of  degree 3 with branching order 4, implying that g = 0.) 

Therefore, we can compute d(x )  effectively. 

Now, (d(x)  + y)  has two more zeros besides S~, T~, $2, T~. We can find them 

without solving algebraically. Consider the equation 

d(x)2 _ y 2  = d(x)2 _ f ( x )  = O. 

This is zero at the x-components  of  Sl, Tl, Sz, T2, and the zeros of  r3- 

Use the equations for the sum and product of  the roots to find the x-  

components  of  the zeros of  r3. Substitute into the equation d ( x ) +  y = 0 

to find y,  and therefore ~3. We may then change the sign of  y to find z3. The 

case where Pt and P2 are roots of  the differentials ri, r2, or their product 

corresponds to the case where y + d(x)  has fewer than six finite solutions; 

then f i x ) -  d (x)  2 has degree less than six, and thus there are additional 

conditions on d; we adjoin these conditions to the above, and the solution is 

then unique. 

EXAMPLE 1. Let X be the Riemann surface ) : 2  = X 6 _ 1. We write f ( x )  = 

x 6 - 1. Then we have (x3) 2 - f i x )  = 13 and (i)2 _ f ( x )  = ( - x2) 3. Therefore, 

and ax 
Y Y 

are Prym differentials for two characters of  the appropriate type on X. Now, 

(z~) = 2P2 and (z2) = 2(0, - i). To solve the problem 

~1"~2~" 3 -~- 0)3, 

we see that 0)3 = (Y + d (x ) ) (dx /y )  has at most 6 -  2 = 4 finite zeros, and 

therefore 

(1) d(x )  2 - f ( x )  is at most  a quartic, 

(2) d(x )  - al(x) has a double zero at P2, 

(3) d(x)  - az(x) has a double zero at (0, - i). 

By the first condition, d(x)  must begin with the term x 3. By the 

third condition, d(x )  - i = x 3 + d2x 2 and so f ( x )  = x ~ + dzx  2 + i. Since 

d(x )  2 - f i x )  is a quartic, d2 = 0, and so d ( x ) = x 3 +  i. Therefore 0)3 = 

(y  + x 3 +  i ) (dx /y)  3. Since d ( x ) 2 - f ( x ) =  2ix 3, 0)3 has three infinite roots 

and three roots when x = 0. Obviously, 0)3 has no root at (0, i), and at an 
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infinite root, y / (  - x 3) must tend to one. Thus, (o)3) -- 3P2 + 3(0, - 1), (%) = 

P2 + (0, - 1), and so (%) = PI + (0,  i) .  Finally, 

We can give the following in, terpretation to this. By the Jacobi inversion 
theorem, there is a map 

X × X~ ~ --, J ( X ) ,  

with ( p, q) -- (q, p) given by 

( f ' + q  o91, f P + q  o92/ , 
(P'  q) \ J 2po ~' ~po / 

where Po is an arbitrarily chosen base point of  X. This map is bijective 
except over the point of  J ( X )  corresponding to the divisor class of 
abelian differentials. We can rid ourselves of this ambiguity as follows: 

Suppose Pl corresponds to Pt + qt and ,02 corresponds to P2 + q2 and P l ¢  P2- t. 
Then, the product p~ P2 corresponds to the divisor class Pl + ql + P2 + q2 - K, 
and this is unique. When pl = p2 t, there is an ambiguity of a CP 1. If 

we perform a blow-down on this locus, we get an abelian variety; this is 

precisely the Jacobian of X with base point one-half the abelian differential 
locus. 

An alternative interpretation is the following; let X3 be the tricanonical 
variety of X; this is a subset of CP 4. The space of cubic differentials is 
5-dimensional; therefore we have the map 

X ~-~ X 3 C C P  4. 

We have a standard basis for the cubic differentials; this exhibits X 3 a s  a 2-1 

branched cover of the twisted cubic x 3 = )COX, x2 = xgx3. Therefore, X3 has 

degree six, and a general hyperplane strikes X3 in 6 points. 

We now have an "almost-group law", defined as follows. We can choose a 

particular canonical divisor k~ + k2. If Zl and h correspond to the divisors 

S~ + Tl and $2 + T2 respectively and S1 + 7"1 + $2 + T2 is not the divisor 
of a quadratic differential, then there is a unique hyperplane passing 

through St, T~, $2, and T2. Assume that it passes through $3 and T3; then 
there is a unique hyperplane passing through $3, T3, kl, and k2. This 
passes through two more points, say $4 and T4, and then we have the 
following: 
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(26) $1 + Tl + $ 2 +  T2=$4 AF T4. 

8. The first variation of the Prym periods of a hyperelliptie surface 

Let X be a hyperelliptic surface of  genus g >_- 3. Its tricanonical variety, 
X3 is a curve of  degree 6 g -  6 in CP 5g-6. The hyperelliptic involution 

of  X induces an involution J3 of  Cp5g-6; if the surface X has equation 

w 2 = p ( x )  for p of  degree 2g + 2, then the space of  cubic differentials have 

as basis 

( d z )  3 z3g-3(dz)3 ( d z )  3 z2g-4(dz) 3 
(27) ~ , . . . ,  

W 3 W 3 ' W 2 ' • . . W3 

The involution multiplies the first 3 g -  2 terms by - 1  and leaves the 

remaining 2g - 3 terms invariant. 

Now, let Pl and P2 be Prym characters such that P~P2 =~ 1. The Prym 
differentials corresponding to each ofp~ and P2 form vector spaces of  dimen- 

sion g - 1; we can choose an arbitrary nonzero r~ and r2 in each. Then the 

divisor of  ~r2 has degree 4 g -  4 but is not bicanonical; therefore, by the 

Riemann-Roch theorem, there is a web ofhyperplanes in CP 5g- 6 of  dimension 

g - 2 containing the divisor (z~z2). If H~ and//2 are two hyperplanes contain- 

ing (r~z2), then 

(HI) ~ (HE), 

(H0 -- (rtz2) ~ (//2) -- (zlz2). 

g - 2  
These form a linear series of type g~g-2; in other words, these divisors 

correspond to a non-canonical class of  degree 2g - 2. Therefore, they form the 

Prym differentials for some character p~; certainly p~ = (p~ P2)-1. 
Now, make an arbitrary choice of  a Prym differential with character p~, and 

call it r~. Jz~ has character p~ P2; this implies that z~. Jz~ is an ordinary quadratic 

differential. Therefore, there is a meromorphic abelian differential to such that 

z~ . z2.  r~ = Z~. Jz~.  oJ. Let z~ = Jz~; then we have 

(28) ~'1172 "~- "~3(J). 

• • g - 2  
We then have an "almost group law" on the Prym dlfferenUals, or on the g~g_ 2. 

Now, consider a Prym differential z with general character p. We have seen 

that z - Jz  is an ordinary quadratic differential. In fact, since z .  J r  is invariant 

under J ,  
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z . J z  = a o + a l z  + • • • + a 2 g _ 2  z 2 g - 2  

Then, we have that both 

z / ( ~ )  and , Z / ( ~ )  

are multiplicative meromorphic functions, and their product is the polynomial 

a(z)  = ao + alz + • • • + a2g-222g-2. 

Let 21, • • . ,  ~2g-2 be the roots of the polynomial a(z). Since Jsends  z / (dz/w)  
into the negative of  Jz/(dz/w),  and vice versa, if(2,, w(2i)) is a root ofz / (dz /w) ,  
then (2~,-  w(2i)) is a root of  Jr/(dz/w).  

In principle, one can then determine the Prym differentials for any p, for ifp 
has all of its values roots of unity, z is a root of a higher-order ordinary 

differential, and it can be described locally by Puiseaux series. If not, one can 

still analyze it by the following procedure: Embed the surface X in its Jacobian 
J(X); then, lift the Jacobian to C g. The surface Xlifts to its homology cover X~, 

and the differentials lift to Fourier series in the coordiantes of C g satisfying 

many conditions on their coefficients. 
Even if we cannot calculate the Prym differentials of  X by force, we can still 

determine the first variation of their periods. We must find the map 
T: A1'°(X, fl)--~ Al'°(X, p -  l) explicitly. We know that T takes holomorphic 

Prym differentials for p to holomorphic Prym differentials for p-1. Now, 
the hyperelliptic involution J induces a bijection from H1,°(X,p) to 
Hl,°(JX, p o J) given by J *z ( z ) =  z(Jz) .  Since J is a holomorphic map and 

since 

J*z(Sz) = 3(J(S) J(z)) 

= p ( J ( S ) ) ¢  o J ( z )  

= p ( S -  l )z  o J ( z )  

=p(S) 

J* maps H1.°(X, p) to HI'°(X, p -  1). As both J* and T are linear, and both are 

bijections, there is a map M from HI'°(X, p -  1) to itself such that M o J* -- T. As 

J* and T are bijective, M is too; therefore, the Prym differentials 

{ T Z l , . . . ,  Ttg_ 1} are linear combinations of the components of  the other basis 

(J 'z1 . . . . .  J*zg- l }. 
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In [4], the effect of the hyperelliptic involution J on the fundamental group 

7~(X) is shown to be: 

j g 
(29a) Ak ~ [I [Bg'..BIAI, BI]BI.Ak -1 .  

I=k 

J 
(29b) Bk ~ B g . . . B k A k B ; l A k l B k  -l 

In fact, these can be written as: 

(30a) 

q 

1-I B1-1 , 
I=k 

. . . B g  t 

J 
Ak ~ B e ' '  " B k C k "  "CgA; 'B~  -~'" "Bg ~ 

J 
(30b) Bk ~ Bg.. .Bk+IC~Bk - 1 . .  . B g  ~. 

We can use our results on the Prym periods of products, conjugates, 

and commutators to show that if z EHI ' ° (X ,p ) ,  then J acts on the Prym 

(31a) 

J * z ( A k ) = Z ( J A k )  

= p ( B ~ . . . B k ) [ T ( C ~ )  + . . .  + ~(C A + ~(A~-~)] 

+ (1 -- p (A~)-  b~(B~. • .B~), 

J*z (Bk) = Z (JBk) 

(31b) = P ( B e ' "  "Bk+ 0[(1 - -p(Ak)  - p ( B k ) - ~ ) z ( B k )  - (1 --p(Bk))Z(Ak)] 

+ (1 - p(Bk) - ¿ ) z ( B g . . -  B k + 1). 

The equations these formulas lead to seem intractable; however, we can 

restrict ourselves to the special case we have considered above, where p(Ak) = 

1 for all k. In this case, the equations above reduce to: 

J*r(Ak) = r ( JAk)  

= p ( B g .  . .Bk)[( l --p(Bk))Z(Ak) + . . .  + (1 - p(Bg))Z(Ag) - Z(Ak)] 

(32a) 
= p ( B s " "  Bk)[ -- p(Bk)z(Ak) + (1 -- p(Bk + t))Z(Ak+ 1) 

+ . . .  + (1 -p(Bs))T(A,)], 

periods by 
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J*Z(Bk) = r( JBk) 

(32b) = p ( B g . . .  Bk)[ -- p(Bk) - %(Bk) -- (1 -- p(Bk))r(Ak)] 

+ (1 -- p(B~)-  l)z(Bg. • • Bk + l)- 

It is then true, but tedious to verify, that the following holds in both the 

general and the special cases: 

g 

Y, [(1 - p(JB~))z(JAk) - (1 - p(JAk))Z(JBk)] 
k ~ l  

g 
(33) = p ( B g . . . B O  Y~ r(C~) 

1=1 

= 0 .  

Now, we recall that Tr is the differential in H~'°(X, p-~) such that  TZ(Ak) = 

- Z(Ak) for all k. Let a E HL°(X, p -  1); then J affects the periods of  cr the same 

way as it does the elements o f  HI'°(X, p), except that p must be replaced by its 

inverse. Thus, 

J*cr(Ak) = or(JAg) 

(34a) = p ( B g .  . * , ~ k ) - l [ a ( C k )  -~- " * "  7 I- o ' ( C g )  7 I- cr(Ak-1)] 

+ (1 -- p (Ak))a(Bo" • • Bk), 

J*a(Bk) = a( JBk) 

(34b) = p ( B s .  . .Bk+,)-l[(:t - -p (A~) - '  - -p(Bk))a(Bk)--  (1 - -p(Bk)- ' )a(Ak)]  

+ (1 - p(Bk) )a (Bg . . .  Bk +,). 

Again, in the special case where p(Ak) = 1 for all k, 

J*a(Ak) = a( JAk) 

= p ( B ~ . . .  Bk)- '[(1 -- p(Bk)- ' )a(Ak)  

(35a) + . . .  + (1 -- p(B~)- ')a(A~) - a(Ak)] 

= p ( B g . . . B k ) -  ~[ - p(Bk)- ' tr(Ak) + (1 -- p(Bk+,)- ')tr(Ak ~ t) 

+ . . .  + (1 -p(Bg)- ' )a (Ag)] ,  
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( 3 5 b )  

J*a(Bk)  = a( JBk)  

= p ( B g . . .  Bk + , ) - ' [  -- p (Bk)a (Bk)  -- (1 - -  p ( B k ) - ' ) a ( A k ) ]  

+ (1 -- p ( B k ) ) a ( B g . . .  Bk + 1). 

N o w  let a = Tz .  T h e n  a ( A k )  = - -  r(Ak),  a n d  s o  J * a  = J * T z  satisfies 

J*a(Ak)  = J*Tz (Ak )  

( 3 6 a )  = p ( B g . . . B D - t [ T z ( C k )  + . . .  + Tz(Cg)  + p ( A , )  - t  Z(Ak)] 

+ (1 - p ( B k ) ) T r ( B g . . .  Bk), 

J*a(Bk)  = J * T z ( B k )  

( 3 6 b )  = p(Bg . . , Bk + 1)-t[( 1 - -  P(Ak) -- p ( B k ) - ' ) T z ( B k ) ]  

+ (1 - p ( B k ) -  t) Z(Ak) -- T z ( B g . . .  Bk + 1). 

In the special case, 

J*TT(Ak)  = p(Bg . . . Bk) -1[  _ (1 - -  p (Bk ) -1 )  r ( A k )  

. . . . .  (1 - p ( B g ) - ' ) z ( A g )  + Z ( A k ) ]  

( 3 7 a )  
= p ( B g . . .  Bk) -1[  _ p(Bk)  -1 r ( A k )  - -  (1 - -  p(Bk+ 1)-1) Z(Ak+ 1) 

. . . . .  (1 - p(Be)  - 1) r ( A g )  ], 

J*Tz (Bk )  = p(Bg . . . B ,  + 1) - ' [  - p ( B k ) T r  (bk)  + (1 - -  P(Bk) -1) Z(Ak) ] 

( 3 7 b )  
- (1 - p ( B k ) ) Z ( B g . .  "Bk+,). 

In the special case, we can now solve the equation Tr = Ja ,  f o r  z E 

H~'°(X, p). First, we take the action of  J on the Prym periods o f  a and express it 

as a matrix equation. By our results above, we have 

( Ja (A , )  . . . . .  Ja(A#))  = ( a ( A l ) , . . . ,  a(Ag)) .  R ,  

where R is a matrix defined as follows: 

(38) 

R = 

- p ( B , ) p ( B ,  . . . . .  Bg) 0 . . .  

(1 - p ( B 2 ) ) p ( B ,  . . . . .  Bg) - p ( B 2 ) p ( B 2 .  . .Bg) . . .  
: • . . .  

(1 - p(B~)) p (B ,  . . . .  , Bg) (1 - R(Bg))p(B2.  . . B e) . . .  
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Now, we know the equation 

- r ( A ~ )  = Ja(Ak) 

holds for all k. Therefore, we can apply this to our basis of Prym differentials 

(zk) as follows. Define ak as the solution of  the above equation for each k. 

Then the differentials (ak) form a basis for the Prym differentials too. Thus, 

we may write 

t7 k = aklZ~ q- ak2z2 -P • • • q- akg- l~'g-- 1" 

Let M be the left half of the Prym matrix of  the differentials ak and P be the 

left half of  the period matrix of  the differentials (rk). Then M = A P  and 
- P  = MR.  From this, we conclude that - p R - I =  AP. However, this is 

guaranteed to have a unique solution for A; it cannot be found explicitly 

because P is not square. 

Since we now know what Tz is for any r and for J,  we can substitute into 

Theorem 2 above to find the first variation of  the Prym differentials. If a 

respects the hyperellipticity of X, then we can replace the integral with the 

action of  J upon it, and thus we get an integral on the sphere. 

Note added in proof. I have been informed that Corollary 1 above was 
proven using combinatorial methods by Hurwitz in [7]. Hurwitz proved this 
result by counting explicitly the number of ways a 3-1 cover of a surface can be 

built up, and how many different ways the homotopy group can act on 
Z3. Recently, this result has been revived as Tyrell's conjecture: Tyrell 

conjectures that the j-invariants of the 40 elliptic curves y~ = d(x) given from 

my construction are all dislinct. I hope these methods will illuminate that 

conjecture. 
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